Mitigating Memory
Corruption Exploits

CSEC 201
Week 15

Review of Overflow Structure

garbage = (“A"* StackSize).encode() #Junk input, fills up local stack frame
eip = “\x78\x56\x34\x12" #Address of jmp esp (or equivalent)
nopsled = “\x90” * sledsize #Wiggle room

buf = <shellcode generated by msfvenom> #malware, often a stager
ending ="\r\n".encode() #Ends server-side socket read
badstring = garbage + eip + nopsled + buf + ending

sock.send(badstring)

Overflow Preconditions

garbage + eip + nopsled + buf + ending

__——

An unbounded buffer write

A jmp esp (or equivalent) at a
predictable memory address
- Can’t debug the app every
time is run if you want to use
the exploit in the real world

—

Weak anti-malware software
(Out of scope for CSEC 201)

Ability to execute code written to
the stack (which should only
have data on it)

Eliminating Preconditions

garbage + eip + nopsled + buf + ending

__——

- Secure write functions
- Stack cookies/canaries
- Structured exceptions

Address space layout randomization (ASLR)
- Randomizes the base virtual memory
address of the process

Strong anti-malware
(Out of scope for CSEC 201)

Data Execution Prevention

- Technique that blocks the processor from
running commands on the stack

Secure Write Functions [1]

e strcpy(dest, src)
o Copies the entirety of src buffer into dest
o Unsafe, since the src buffer can be longer than dest buffer
o Logic holds for scanf, gets, sprintf (for some argument lists), etc.

e strncpy(dest, src, len)

o Copies len-many characters from src buffer into dest buffer
Intended use: strncpy(dest, src, sizeof(dest))
Better than strcpy, but still considered unsafe since len can be longer than dest
If len is reached before end of src, dest will also not be null terminated (Buffer overreads)
Encourages the anti-pattern: strncpy(dest, src, strlen(src))
m If len > strlen(src), strncpy will pad with 0, a cause of errors [src in notes]
o Logic also holds for sprintf, fgets, sprintf (for some argument lists), etc.

o O O O

Secure Write Functions [2]

e “<function>_s” family of functions (strncpy_s, scanf_s, etc.)
o Visual Studio specific
o strncpy_s(dest, dest_len, src, src_len)
m Copies the smaller of dest_len and src_len from src into dest.
m Addresses strncpy anti-pattern by requiring both buffer lengths
e Nothing stopping: strncpy_s(dest, strlen(src), src, strlen(src))
o scanf_s(format-spec, buffer, len)
m Reads len-many characters from stdin into the buffer
m Intended use: scanf s(format-spec, buffer, sizeof(buffer))

e Glibc (Linux)
o Refuses to add memory-safe functions, puts onus on developers to use functions securely

o Argument - even Microsoft versions don’t completely remove developer responsibility
o Cisco created a library safelibc, which receives/received very little use

Stack Cookies / Canaries [1]

High Added to Added by Low
Address the stack by | push ebp at Address
CALL beginning
of called
function

Stack Cookies / Canaries [2]

Referred to as GuardStack in Visual Studio
- Compile flag: /GS
- Project Properties > Configuration
Properties > C/C++ > Code
Generation > Security Check

Calling function’s stack frame | Ret Addr

Saved EBP

Canary val

Called function’s stack frame

High
Address

/ |

Low
Address

Random constant value
pushed at beginning of
called function

Ex:

Funct2:
Push ebp
Push 1234

Check at end of function to see if value changed

Ex:

mov esp, ebp
pop ebx
cmp ebx,1234

: clear local stack

; pop canary into ebx

; Check val on stack against constant

jne overflowerror ; Overflow happened if canary changed
; restore calling function’s stack frame

; pop saved address into eip

pop ebp

ret

Stack Cookies / Canaries [3]

e Different kinds of canaries
o Null canary - 0x00000000
m Many string operation will terminate once they hit the null-byte, stopping overreads and
some overflows
Terminator canary - 0x00000aff
Random canary - 0x0O<random int>
o XOR canary - like a random canary, but the value is intended to be XOR’d against a non-static
value to produce a result that is difficult to pre-calculate
m Often the EBP

e Can be bypassed (except XOR canary)
o Canary type needs to be known (can be reverse engineered via debuggers)
o The location of the canary on the stack can be read

Src: https://www.sans.ora/blog/stack-canaries-gingerly-sidestepping-the-cage/

https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/

Structured Exception Handling [1]

e A Windows-specific add-on
o Butnotjust to C, pattern holds for other Windows languages (VB, C#, etc)
e Two mechanisms- try-except and try-finally

o try-except -> “Exception Handlers”
o try-finally -> “Termination Handlers”
o From a development perspective, behaves like exception handling in Python / Java

e If used, Visual Studio compile command must include /EHa or /Ehsc flags
e Adds an SEH block to the stack whenever a function is called

Structured Exception Handling [2]

Address of next SEH record

High Address _ > Record 1
Calling function’s stack frame Address of exception handler]
SEH Block) - N
Address of next SEH record
Args for called function < > Record 2

Return address

< Address of exception handler

Ptr to calling function’s frame Address of next SEH record
< \ Record 3
Called function’s stack frame Address of exception handler
Low Address ¢ y
NULL
< \ Record N

\ Address of default handler /

Structured Exception Handling [3]

__try{
__try{
Some code
}
__finally{

Some default

}

___except(<exception processing directive>){

<some error handler>

}

__except(<exception processing directive>){

<some error handler>

Exception handlers will return here

EXCEPTION_CONTINUE_EXECUTION(-1)
-- Tells __except to skip the handler

EXCEPTION_CONTINUE_SEARCH (0)
-- Tells __except the exception was not
recognized

EXCEPTION_EXECUTE_HANDLER (1)
-- Tells ___except to trigger the handler

Typically calculated by a “filter” function based
on the result of GetExceptionCode()

An SEH record would exist for each of these

Structured Exception Handling [4]

main()

{
* p = 9x00000000;
("hello");
—ftry
h
| EACEPI1ION ACCESS VIOLAITION (A A),
de <excpt.h> _try
{
ap(unsigne code, struct _EXCEPTION_POINTERS *ep) ("in try”);
*p = 13; c
("in filter."); o
(code == EXCEPTION ACCESS VIOLATION) {—ﬁ”ally
2 o Lo L ("in finally. termination: ");
("caught AV as expected.”); (AbnormalTermination() ? "\tabnormal” : "\tnormal");
EXCEPTION_ EXECUTE_HANDLER; }
}
__except(filter(GetExceptionCode(), GetExceptionInformation()))
{
("didn't catch AV, unexpected."); ("in except”);

EXCEPTION_CONTINUE_SEARCH;

https://docs.microsoft.com/en-us/cpp/cpp/try-except-statement?view=msvc-170

Output

hello

in try

in try

in filter.

caught AV as expected.
in finally. termination:

abnormal
in except
world

Structured Exception Handling [9]

e Incomplete list of exception codes...
o EXCEPTION_ARRAY BOUNDS_EXCEEDED
o EXCEPTION_ACCESS_VIOLATION
o EXCEPTION_STACK_CHECK
o EXCEPTION_STACK_OVERFLOW

e SEH can be bypassed
o Basic SEH often includes commands that can facilitate exploit development
o Involves overwriting the SEH Block on the stack and replacing exception handler addresses

e SEH has been hardened in SEHOP and SAFESEH

o SEHOP - Structured Exception Handling Overwrite Protection
m Validates the record chain in the SEH Block when __except fires to ensure exception
handler addresses have not been replaced
o SAFESEH - Moves SEH Blocks to memory locations outside the program stack
m All DLLs loaded by the application must be compiled with SAFESEH for it to work
o There are bypasses for these too, of course
https://docs.microsoft.com/en-us/windows/win32/Debug/getexceptioncode

Address Space Layout Randomization (ASLR)

e \Varies program’s virtual memory

address space
o Windows may change image base over

time
e Makes exploit development harder by &
making it more difficult to predict
addresses for jmp esp (or equiv)
e Windows supports mandatory ASLR
on top of compiled version
Compiler flag: /DYNAMICBASE
Project Properties > Configuration
Properties > Linker > Advanced >
Randomized Base Address

Exploit protection

See the Exploit protection settings for your system ar
can customize the settings you want.

System settings Program setting

Use default (On) v

Force randomization for images (Mandatory ASLR)
Force relocation of images not compiled with /DYNAMICBAS

On by default

Data Execution Prevention

e Marks portions of memory used for data as

non-executable Exploit protection
(@) Vlrtua| memory iS marked W|th an access Contr0| ConStant, See the Exp]oit protect‘ion settings for your system and programs. You
indicating permissions: can customize the settings you want.
m Ex: PAGE_EXECUTE_READ, PAGE_READONLY, etc ; ;
o Stack / Heap marked PAGE_READWRITE Systemisettings; \Rragranmiserings
e Astack / heap address landing in EIP throws Controt fow cuard CFG
STATU S_ACC ESS_VI O LATI O N exce ptlon Ensures control?low integrity for indirect calls.

e Compiler flag: /NXCOMPAT
e Project Properties > Configuration Properties >
Linker > Advanced > Data Execution Prevention

Use default (On)

Data Execution Prevention (DEP)
(D E P) Prevents code from being run from data-only memory pages.

e \Windows supports mandatory DEP Use default (On) v
e Can be bypassed (of course)

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

Control Flow Guard (CFG) [1]

Platform feature (like DEP / [SAFE]SEH[OP] / ASLR)

Compiler flag: /guard:cf

e Project Properties > Configuration Properties > Linker >
Advanced > Randomized Base Address
e Intended to secure indirect function calls

o Follow the pattern:
mov regA, [regB]
call regA

Jint _tmain(int argc, _TCHAR® argv[])

{
int i = @;
CTargetObject® o_array = new (TargetObject[5];
for (1 = 0; 1 < 1000; i++)

| o array[@]. fun(1); l

return 0;

}

nov ecx; 3E8h
rep stosd

mov esl, [esl

push 1

all esi

add esp, 4

xor eax, eax
nov ecx; 3E8h Pointer to fake object
rep stosd ’,,4”” constructed by attacker
mov esi, [esi]
push 1
call esj === (Call to the 1st stage
add esp, 4 shellcode
Xor eax, eax

o If the value of regB is changed, call will jump to a different location

Note - address of the function being called is not decided until

runtime

https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows 10.pdf

mov ecx, 3ESh

Control Flow Guard (CFG) [2] e T

nov ecx, esi Target
push 1
call @_guard_check_icall@4 ; gquard check_icall(x)

e Compiler computes a “bitmap” (CFGBitmap) Y —s

Based on starting addresses of all functions

Calculated at runtime (Because of ASLR)

Every 8 bytes of process memory corresponds to 1 bit in the CFG Bitmap

If there is a function starting address in a group of 8 bytes, set the corresponding bitto 1, 0
otherwise

e Compiler adds a call to a guard function before indirect call
o In version of Windows w/o CFG, this does nothing

e Guard function looks up address to call in CFGBitmap
o If corresponding bit is 1, call is (likely) valid
m There must be a starting function call within 7 bytes of address of function call, so
attacker’s ability to jump is limited
o If corresponding bit is 0, call is invalid

o O O O

https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows 10.pdf

Linux Stack Protections - Linux

e Insecure Functions
o -D _FORTIFY_SOURCE=2 will replace some unsafe functions with safer counterparts

e Stack Canaries
o On by default in gcc (-fno-stack-protector disables)

e Data Execution Prevention
o Iffy - some older Linux applications require DEP be disabled

o Decision is made by the linker
m ‘-z execstack’ indicates that binary requires executable stack
m ‘-z noexecstack’ indicates that binary does not require executable stack (default behavior)

e Address Space Layout Randomization
o Referred to as “Position independent executable” (-pie or -fpie)
o Default behavior is to have PIE enabled

Checking Linux Binaries (Screenshot from 4/2020)

ASLR

Stack canaries

Replace insecure
glibc functions

Like DEP - mark
areas of memory
as read-only

nerdprof@Behemoth: /opt/zoom$ hardening-check zoom
zoom:

Position Independent Executable: no, normal executable!

Stack protected: no, not found!

Fortify Source functions: no, only unprotected functions found!
Read-only relocations: yes

Immediate binding: no, not found!
nerdprof@Behemoth: /opt/zoom$ hardening-check ZoomLauncher
ZoomLauncher:

Position Independent Executable: no, normal executable!

Stack protected: yes

Fortify Source functions: no, only unprotected functions found!
Read-only relocations: yes

Immediate binding: no, not found!

nerdprof@Behemoth: /opt/zoom$ hardening-check zopen

zopen:

Position Independent Executable: yes

Stack protected: no, not found!

Fortify Source functions: no, only unprotected functions found!
Read-only relocations: yes

Immediate blndlng yes

nerdprof@Behemoth: /opt/zoom$ []

Checking Linux Binaries

e https://github.com/pwndbg/pwndbg
o Extension for GDB (install and then run gdb)
o Requires pwntools Python3 module (pip install pwntools)... not documented

checksec Like DEP - mark (certain)
[*] '/home/rob/testarea/wordify' ?égz?oﬂﬁymemory s
Arch: amd64-64-1ittle
RELRO: Full RELRO Stack canaries
Stack: No canary found
NX: NX enabled Actual DEP

PIE: PIE enabled

ASLR

https://github.com/pwndbg/pwndbg

Where to go after this?

e More advanced exploit development
o Heap Sprays
o SEH Bypasses
o DEP Bypasses
o ASLR Bypasses

e Investigating how to build these security controls into software development
lifecycles
e Bug bounty hunting!

o Always ensure that you follow the rules of bug bounty programs

