
Mitigating Memory 
Corruption Exploits

CSEC 201
Week 15 



Review of Overflow Structure

garbage = (“A”* StackSize).encode() #Junk input, fills up local stack frame

eip = “\x78\x56\x34\x12” #Address of jmp esp (or equivalent)

nopsled = “\x90” * sledsize #Wiggle room

buf = <shellcode generated by msfvenom>  #malware, often a stager

ending =”\r\n”.encode() #Ends server-side socket read

badstring = garbage + eip + nopsled + buf + ending

sock.send(badstring)



Overflow Preconditions

garbage + eip + nopsled + buf + ending

An unbounded buffer write

A jmp esp (or equivalent) at a 
predictable memory address

- Can’t debug the app every 
time is run if you want to use 
the exploit in the real world

Weak anti-malware software
(Out of scope for CSEC 201)

Ability to execute code written to 
the stack (which should only 
have data on it)



Eliminating Preconditions

garbage + eip + nopsled + buf + ending

- Secure write functions
- Stack cookies/canaries
- Structured exceptions

Address space layout randomization (ASLR)
- Randomizes the base virtual memory 

address of the process

Strong anti-malware
(Out of scope for CSEC 201)

Data Execution Prevention
- Technique that blocks the processor from 

running commands on the stack



Secure Write Functions [1]

● strcpy(dest, src) 
○ Copies the entirety of src buffer into dest
○ Unsafe, since the src buffer can be longer than dest buffer
○ Logic holds for scanf, gets, sprintf (for some argument lists), etc.

● strncpy(dest, src, len)
○ Copies len-many characters from src buffer into dest buffer
○ Intended use: strncpy(dest, src, sizeof(dest))
○ Better than strcpy, but still considered unsafe since len can be longer than dest
○ If len is reached before end of src, dest will also not be null terminated (Buffer overreads)
○ Encourages the anti-pattern:  strncpy(dest, src, strlen(src)) 

■ If len > strlen(src), strncpy will pad with 0, a cause of errors [src in notes]
○ Logic also holds for sprintf, fgets, sprintf (for some argument lists), etc.  



Secure Write Functions [2]

● “<function>_s” family of functions (strncpy_s, scanf_s, etc.)
○ Visual Studio specific
○ strncpy_s(dest, dest_len, src, src_len)

■ Copies the smaller of dest_len and src_len from src into dest.
■ Addresses strncpy anti-pattern by requiring both buffer lengths

● Nothing stopping:  strncpy_s(dest, strlen(src), src, strlen(src))
○ scanf_s(format-spec, buffer, len)

■ Reads len-many characters from stdin into the buffer
■ Intended use: scanf_s(format-spec, buffer, sizeof(buffer))

● Glibc (Linux)
○ Refuses to add memory-safe functions, puts onus on developers to use functions securely
○ Argument - even Microsoft versions don’t completely remove developer responsibility
○ Cisco created a library safelibc, which receives/received very little use



Stack Cookies / Canaries [1]

Calling function’s stack frame Ret addr Saved EBP

High 
Address

Called function’s stack frame

Low 
Address

Added to 
the stack by 
CALL

Added by 
push ebp at 
beginning 
of called 
function



Stack Cookies / Canaries [2]

Calling function’s stack frame Ret Addr Canary val

High 
Address

Called function’s stack frame

Low 
Address

Saved EBP

Random constant value 
pushed at beginning of 
called function
Ex:

Funct2:
Push ebp
Push 1234

Check at end of function to see if value changed
Ex:

…
mov esp, ebp ; clear local stack
pop ebx ; pop canary into ebx
cmp ebx,1234 ; Check val on stack against constant
jne overflowerror ; Overflow happened if canary changed
pop ebp ; restore calling function’s stack frame
ret ; pop saved address into eip

Referred to as GuardStack in Visual Studio
- Compile flag: /GS
- Project Properties > Configuration 

Properties > C/C++ > Code 
Generation > Security Check



Stack Cookies / Canaries [3]

● Different kinds of canaries
○ Null canary  - 0x00000000

■ Many string operation will terminate once they hit the null-byte, stopping overreads and 
some overflows

○ Terminator canary - 0x00000aff
○ Random canary - 0x00<random int>
○ XOR canary - like a random canary, but the value is intended to be XOR’d against a non-static 

value to produce a result that is difficult to pre-calculate
■ Often the EBP

● Can be bypassed (except XOR canary)
○ Canary type needs to be known (can be reverse engineered via debuggers)
○ The location of the canary on the stack can be read

Src: https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/

https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/


Structured Exception Handling [1]

● A Windows-specific add-on
○ But not just to C, pattern holds for other Windows languages (VB, C#, etc)

● Two mechanisms- try-except and try-finally
○ try-except -> “Exception Handlers”
○ try-finally -> “Termination Handlers”
○ From a development perspective, behaves like exception handling in Python / Java

● If used, Visual Studio compile command must include /EHa or /Ehsc flags
● Adds an SEH block to the stack whenever a function is called



Structured Exception Handling [2]

Calling function’s stack frame

Return address

Ptr to calling function’s frame

Called function’s stack frame

High Address

Low Address

SEH Block

Args for called function

Address of next SEH record

Address of exception handler

Address of next SEH record

Address of exception handler

Address of next SEH record

Address of exception handler

NULL

Address of default handler

Record 1

Record 2

Record 3

Record N



Structured Exception Handling [3]
__try{

__try{

Some code

}

__finally{

Some default

}

}

__except(<exception processing directive>){

<some error handler>

}

__except(<exception processing directive>){

<some error handler>

}

EXCEPTION_CONTINUE_EXECUTION(-1)
-- Tells __except to skip the handler

EXCEPTION_CONTINUE_SEARCH (0)
-- Tells __except the exception was not 
recognized

EXCEPTION_EXECUTE_HANDLER (1)
-- Tells __except to trigger the handler

Typically calculated by a “filter” function based 
on the result of GetExceptionCode()

An SEH record would exist for each of these

Exception handlers will return here



Structured Exception Handling [4]

https://docs.microsoft.com/en-us/cpp/cpp/try-except-statement?view=msvc-170



Structured Exception Handling [5]

● Incomplete list of exception codes…
○ EXCEPTION_ARRAY_BOUNDS_EXCEEDED
○ EXCEPTION_ACCESS_VIOLATION
○ EXCEPTION_STACK_CHECK
○ EXCEPTION_STACK_OVERFLOW

● SEH can be bypassed
○ Basic SEH often includes commands that can facilitate exploit development
○ Involves overwriting the SEH Block on the stack and replacing exception handler addresses

● SEH has been hardened in SEHOP and SAFESEH
○ SEHOP - Structured Exception Handling Overwrite Protection

■ Validates the record chain in the SEH Block when __except fires to ensure exception 
handler addresses have not been replaced

○ SAFESEH - Moves SEH Blocks to memory locations outside the program stack
■ All DLLs loaded by the application must be compiled with SAFESEH for it to work

○ There are bypasses for these too, of course
https://docs.microsoft.com/en-us/windows/win32/Debug/getexceptioncode



Address Space Layout Randomization (ASLR)

● Varies program’s virtual memory 
address space 

○ Windows may change image base over 
time

● Makes exploit development harder by 
making it more difficult to predict 
addresses for jmp esp (or equiv)

● Windows supports mandatory ASLR 
on top of compiled version

● Compiler flag: /DYNAMICBASE
● Project Properties > Configuration 

Properties > Linker > Advanced > 
Randomized Base Address



Data Execution Prevention

● Marks portions of memory used for data as 
non-executable

○ Virtual memory is marked with an access control constant, 
indicating permissions:

■ Ex: PAGE_EXECUTE_READ, PAGE_READONLY, etc
○ Stack / Heap marked PAGE_READWRITE

● A stack / heap address landing in EIP throws 
STATUS_ACCESS_VIOLATION exception

● Compiler flag: /NXCOMPAT
● Project Properties > Configuration Properties > 

Linker > Advanced > Data Execution Prevention 
(DEP)

● Windows supports mandatory DEP
● Can be bypassed (of course)

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants



Control Flow Guard (CFG) [1]

● Platform feature (like DEP / [SAFE]SEH[OP] / ASLR)
● Compiler flag:  /guard:cf
● Project Properties > Configuration Properties > Linker > 

Advanced > Randomized Base Address
● Intended to secure indirect function calls

○ Follow the pattern: 
mov regA, [regB]
call regA

○ If the value of regB is changed, call will jump to a different location
○ Note - address of the function being called is not decided until 

runtime

https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf



Control Flow Guard (CFG) [2]

● Compiler computes a “bitmap” (CFGBitmap)
○ Based on starting addresses of all functions
○ Calculated at runtime (Because of ASLR)
○ Every 8 bytes of process memory corresponds to 1 bit in the CFG Bitmap
○ If there is a function starting address in a group of 8 bytes, set the corresponding bit to 1, 0 

otherwise
● Compiler adds a call to a guard function before indirect call

○ In version of Windows w/o CFG, this does nothing
● Guard function looks up address to call in CFGBitmap

○ If corresponding bit is 1, call is (likely) valid
■ There must be a starting function call within 7 bytes of address of function call, so 

attacker’s ability to jump is limited
○ If corresponding bit is 0, call is invalid 

https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf



Linux Stack Protections - Linux

● Insecure Functions
○ -D_FORTIFY_SOURCE=2 will replace some unsafe functions with safer counterparts

● Stack Canaries 
○ On by default in gcc (-fno-stack-protector disables)

● Data Execution Prevention
○ Iffy - some older Linux applications require DEP be disabled
○ Decision is made by the linker

■ ‘-z execstack’ indicates that binary requires executable stack
■ ‘-z noexecstack’ indicates that binary does not require executable stack (default behavior)

● Address Space Layout Randomization
○ Referred to as “Position independent executable” (-pie or -fpie)
○ Default behavior is to have PIE enabled



Checking Linux Binaries (Screenshot from 4/2020)

Stack canaries

ASLR

Replace insecure 
glibc functions

Like DEP - mark 
areas of memory 
as read-only



Checking Linux Binaries

● https://github.com/pwndbg/pwndbg
○ Extension for GDB (install and then run gdb)
○ Requires pwntools Python3 module (pip install pwntools)... not documented

Like DEP - mark (certain) 
areas of memory as 
read-only

Stack canaries

ASLR

Actual DEP

https://github.com/pwndbg/pwndbg


Where to go after this?

● More advanced exploit development
○ Heap Sprays
○ SEH Bypasses
○ DEP Bypasses
○ ASLR Bypasses

● Investigating how to build these security controls into software development 
lifecycles

● Bug bounty hunting!
○ Always ensure that you follow the rules of bug bounty programs


